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Background 

Machine learning (ML) is a field of computer science that enables computers to learn 

without being explicitly programmed. In practical applications, a machine learning model is 

created and tailored to solve a specific problem through a training process. Models can take 

a variety of different inputs and provide a range of outputs based on the underlying patterns 

they find during the training process. For example, a model designed to predict the 

temperature of the climate on a given day could be trained using climate data from previous 

years. 

Machine learning models are composed of three main components, each serving a unique 

function in the training process: 

1. Decision-Making Process: An ML model always includes a decision-making 

process. This could involve predicting the number of sales a company will have in the 

next quarter or classifying an image as containing a chair or a table. 

2. Loss Function: To improve, the model needs a way to evaluate the efficiency of its 

decision-making process. Loss functions quantify the accuracy of the decision-

making-process by comparing its results to manually labelled data. These functions 

are predefined by a human developer and remain constant throughout the training 

process of the model. Various metrics can be produced by different loss functions, 

with a popular one being Mean Squared Error (MSE). MSE calculates the squared 

difference between the estimated and correct answers determined by developers, 

where squaring removes any negative numbers. 

3. Optimization Process: After evaluating its performance, the model must modify its 

decision-making process to minimise the error calculated by the loss function. The 

optimizer is a function that attempts to minimise the calculated loss as much as 

possible. It does this by adjusting the decision-making-process’s parameters after 

each iteration of training. This is largely a trial-and-error process. Each iteration of the 

training process brings slightly better results. However, excessive iteration can result 

in ‘overfitting.’1  

 

                                                
1 Overfitting occurs when a model has been trained on a particular dataset for so long that it is unable 
to generalise what it has learned to new data, simply memorising the answers to the training data. 



 

Categories of Machine Learning 

There are four broad categories of machine learning: 

● Supervised Machine Learning: This involves the highest level of human 

intervention. The model updates its parameters based on labelled data provided 

during training. 

● Unsupervised Machine Learning: This method involves training models on data 

that lacks labels, allowing the model to identify patterns which may not be apparent 

to the human eye on its own. 

● Semi-Supervised Machine Learning: This approach uses a small amount of 

labelled data and a large amount of unlabelled data, combining elements of both 

supervised and unsupervised learning. 

● Reinforcement Learning: This method involves training a model to make 

sequences of decisions by rewarding desirable outcomes and penalising undesirable 

ones. 

 

Rationale 

Machine learning has vastly increased in popularity and relevance recently, with 

developments in image processing, generative AI, and classification built on over six 

decades of research. From media creation to disease diagnosis, the influence of machine 

learning technology on daily life has grown dramatically. However, machine learning 

technology has not seen much deployment in embedded systems. An embedded system is 

a computer that works closely with mechanical parts to achieve a specific purpose, such as 

a washing machine or a microwave. 

I believe that embedded ML is a field with great potential, as groundbreaking 

developments are already being made, such as in self-driving cars. Exploring this field could 

push the boundaries of what is possible in consumer electronics, allowing product designers 

to focus more on making complex functions a reality rather than on the minute details of 

feature implementation. This is especially true with the rise of more beginner-friendly 

machine learning programming tools which simplify the model creation process, shortening 

the gap between design and implementation.  

To address the challenge of implementing machine learning in embedded systems, I 

decided to build a small robot that would take an input and make a prediction using a 

machine learning model. I chose to use an Arduino system for this project. An Arduino is a 

simple computer, allowing electronics developers to construct prototypes before settling on a 

final design. 

The Arduino caught my attention because it uses a microcontroller instead of a 

microprocessor to execute computer programs. A microprocessor, also known as a central 

processing unit (CPU), is the component of a computer that carries out most calculations 

and logical operations. Microprocessors are optimised for general-purpose applications, 



executing instructions quickly and are commonly found in devices such as laptops, 

smartphones, and tablets. In contrast, a microcontroller contains most of the components of 

an entire computer system on a single chip. Microcontrollers are typically designed for 

embedded systems, prioritising power efficiency and small size over performance. For this 

reason, I chose to build my artefact around an Arduino, as I thought it could accurately 

model an embedded system.  

Machine learning and recognition technology  

Recognition technology has advanced dramatically through machine learning 

methods. Many consumer-grade electronics, such as smartphones and laptops, use 

biometric recognition like fingerprint and face recognition as security measures. I determined 

that this application of machine learning technology was appropriate for my project because 

(1) it has a broad niche with plenty of real-world applications, and (2) it is a well-explored 

field with many available tools and resources. 

Once I established the purpose of embedded machine learning in my project, I 

needed to choose its output. To maintain the theme of embedded systems, I wanted the 

artefact to work closely with mechanical parts. My initial idea was to create a robot that uses 

face detection technology to align a nerf pistol with a person's face before firing a foam dart. 

However, I modified this idea to create an artefact with broader appeal and lower complexity, 

ultimately deciding that the output would be a photograph instead. In January, I began 

expanding on my initial project idea by researching the components and programming tools I 

would need. 

 

Selecting components 

Motor: After researching the functions and use cases for many types of electric motor, I 

decided that a servo motor was appropriate for this project. Unlike other types of AC and DC 

motors, servo motors can be controlled precisely with electric signals. This lends itself to 

being controlled with programs running on the Arduino. I chose the SG90 servo motor 

because it met the torque requirements I had calculated, with a maximum rotational torque 

of 2 kg/cm. 

Arduino: As previously justified, I chose the Arduino due to its simplicity, which more 

accurately represents the capabilities of computers found in embedded systems. 

Additionally, my prior experience with Arduino provided an advantage, easing the 

programming aspect of this project and helping me meet deadlines. 

Camera: I selected the OV7670 camera module because it has a low output resolution of 

640x480 pixels which could reduce the processing load on the Arduino. During my January 

research phase, I also found a guide on using this specific camera with an Arduino, which 

influenced my decision. 

 

 

 



Methodology and Findings 

At the beginning of my research project, I identified the need to expand my knowledge about 

machine learning. I began reading general literature regarding machine learning and spotted 

many new key terms. I decided to explore one of these further: application programming 

interface (API)2. I considered basing my artefact around a machine learning API, if the face 

detection program could not run locally on the Arduino. To my surprise, I discovered that this 

suspicion was a reality. By exploring the literature in embedded machine learning, I found 

that the processing capabilities of the microcontroller of the Arduino are simply not enough to 

handle machine learning programs. In fact, prototypes in the field of embedded machine 

learning are typically made with another small computer which works closely with electronics 

called a Raspberry Pi. Despite their very similar appearances, the Arduino and Raspberry Pi 

have a key difference between them which leads to vastly different levels of performance. 

Chiefly, the Raspberry Pi uses a microprocessor for executing instructions, whereas the 

Arduino uses a microcontroller. As I outlined earlier, this simple change can mark the 

difference between the computing performance of a vending machine and a personal 

computer. At this point, I knew I would need to follow a similar model to the APIs I had 

discovered shortly beforehand. The processing of machine learning programs is offloaded to 

a computer more capable than the Arduino, and the outputs are simply returned to it.  

 

I attacked this problem with a new design in mind. Inspired by APIs, the role of the Arduino 

radically changed to simply acting as a conduit for the data to be exchanged between the 

artefact and the computer to be running the machine learning program. From this new 

framework, I developed a new procedure that would satisfy my initial objectives for the 

project. 

 

1. The camera module captures an image and sends it to the Arduino. 

 

2. This image is received by the Arduino and sent to the computer to be 

analysed. 

 

3. The image is passed through the object detection algorithm stored on the 

computer to find any faces within it. 

4. Next, depending on the position of the face within the image, the computer 

will take one of three actions: 

a. If there is no detected face in the image, the computer will request the 

next image to be sent from the Arduino and repeat the process. 

b. If the detected face is far from the centre of the image, the computer 

will request the Arduino to move the motors in a specified direction to 

draw the face closer to the centre. 

c. If the detected face is within a tolerated distance from the centre, the 

image is stored onto the computer. 

 

After conceptualising this design, I researched the technologies that would be necessary to 

move the project forward. The model of Arduino I used contains an integrated Bluetooth and 

                                                
2 An API is a program which allows applications to exchange data or functions with each other. For 

example, a web developer creating a website could use an API from to easily implement features from 
other sources, such as a ‘sign in with Google’ feature, with little effort. 



Wi-Fi transceiver, in addition to a USB-C port. As a result, for communication between the 

computer and the Arduino, I considered these transmission media. After careful deliberation 

of the strengths and weaknesses of each medium, I decided to use 2.4 GHz Wi-Fi. I have 

outlined the main strengths and weaknesses I considered in Table 1. 

 

 

Table 1 

After this decision, I researched how I can enable my personal computer and Arduino to 

communicate programmatically over Wi-Fi. After identifying programming tools named 

libraries which could enable this for my personal computer and the Arduino, I employed test 

Transmission medium Advantages Disadvantages 

Bluetooth ● Convenient. Provides 

a direct connection 

between two devices. 

● Data transmission rate 

is too low. Maximum 

rate of 2Mbps. This 

would result in a single 

image taking at least 

3.69 seconds to 

transmit. 

● Connection 

deteriorates quickly 

over large distances. 

● More likely to 

experience data loss. 

2.4 GHz Wi-Fi ● Devices can be 

connected to each 

other wirelessly.  

● Higher maximum data 

transmission rate of 

150Mbps. 

● Introduces more 

hurdles to overcome in 

implementation.  

● Both devices must be 

connected indirectly 

via a wireless access 

point and a router. 

● More likely to 

experience data loss. 

USB – C ● Physical transmission 

medium, more 

reliable.  

● Less likely to 

experience packet 

loss. 

● Also limited by a low 

data rate of 

115250bps 



programs which existed for both libraries. In doing this, my personal computer was able to 

connect to itself over Wi-Fi to send itself a message. However, my experiments with Wi-Fi 

connectivity on the end of the Arduino were unsuccessful. Connections between existing 

websites and my own computer refused to be established. 

 

Following this, I took a step back and tried setting up the camera with the Arduino. To extract 

camera data, I looked into two Arduino libraries extensively: OV767X and Adafruit OV7670. 

Little official documentation was available, so I inferred the majority of what I learned about 

them from published code examples and the files that made up the library itself. Eventually, I 

interfaced the camera by following its circuit diagrams and running a test program for its 

library, which produced a slew of errors. After troubleshooting and scouring forums for a 

solution to my problem, I discovered that the model of Arduino I was using was incompatible 

with the libraries I had sought out. 

 

 

Conclusion 

 There are still many hurdles in the world of embedded machine learning which must be 

overcome before this technology can become more widespread in systems such as 

household appliances. However, more computationally powerful embedded systems like 

self-driving cars are landmark achievements in the right direction. Offloading the machine 

learning process to more computationally powerful computers with APIs could allow 

microcontroller-based embedded systems to carry out complex functions without any 

additional processing power. A key example of this is the Amazon Echo series of devices, 

which allow users to interact with an AI assistant named Alexa. These devices record audio 

of the user’s request and send it via the Internet to servers owned by Amazon which 

interpret the sound and return the corresponding commands to the Echo device. This allows 

complex functions to be delivered to a consumer with a device with limited computing 

capabilities. 

 


